Assumptions and Modeling for DAB TMDL Development

11/19/2012

TMDL Overview

Modeling Overview

- Simulate impairment sources and transport pathways that affect sediment concentrations in San Diego Bay
- Linked watershed (LSPC) and receiving water (EFDC) models
- Similar modeling approach and assumptions used for CPS TMDLs

Modeling Details/Assumptions

- LSPC Watershed Model
 - Rainfall-runoff model
 - Simulate land use contributions
 - Long-term simulation includes critical period (Oct 2004 – Apr 2005)
 - Calibration hydrology and water quality (sediment)
 - Pollutant concentrations/loads estimated based on regression with TSS (except TPCBs)
 - TPCBs non-detect
- EFDC Receiving Water Model:
 - Model hydrodynamics and water/sediment quality
 - Incorporate LSPC time-series input
 - Initial sediment concentration = TMDL target
 - Avg results across impairment grid cells
 - Evaluate compliance with TMDL target for each pollutant. Identify % reduction required
 - Evaluate contribution from each drainage area

Example Model Linkage:

Chollas, Paleta, and Switzer Watersheds

Downtown Anchorage and B Street/Broadway Piers

EFDC Modeling Domain (grid)

TMDL Calculation

$$TMDL = \Sigma WLA + \Sigma LA + MOS$$

ΣWLA: Sum of waste load allocations

ΣLA: Assumed cleanup to TMDL targets

MOS: Margin of safety (implicit and explicit)

Allocate watershed load reduction to responsible parties